Protein-protein interactions between lens vimentin and αB-crystallin using FRET acceptor photobleaching
نویسندگان
چکیده
PURPOSE The R120G mutation of alphaB-crystallin is known to cause desmin-related myopathy, but the mechanisms underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein-protein interaction between R120G alphaB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital cataract. METHODS Protein-protein interactions were determined by confocal fluorescence resonance energy transfer (FRET) microscopy using green fluorescence protein (GFP) as the donor and red fluorescence protein (RFP) as the acceptor. The lens vimentin gene was fused into a GFP vector and the alphaB-crystallin (WT or R120G mutant) gene was fused into the RFP vector. The donor-acceptor plasmid pairs of intermediate filament (IF)-GFP and alphaB-RFP were co-transfected into HeLa cells. After incubation, confocal fluorescence images of the transfected cells were taken. FRET was estimated by the acceptor photobleaching method. Protein-protein interaction was evaluated by FRET efficiency. RESULTS The confocal fluorescence images showed that the cells expressing vimentin and R120G alphaB-crystallin contained large amounts of protein aggregates while few vimentin fibers were observed. FRET efficiency analyses indicated that vimentin had a significantly greater protein-protein interaction with R120G alphaB-crystallin than with WT alphaB-crystallin. CONCLUSIONS Our results show that the R120G alphaB-crystallin mutant promoted vimentin aggregation through increased protein-protein interaction. This process may contribute to the formation of congenital cataract.
منابع مشابه
Mutations in Human αA-Crystallin/sHSP Affect Subunit Exchange Interaction with αB-Crystallin
BACKGROUND Mutation in αA-crystallin contributes to the development of congenital cataract in humans. Heterooligomerization of αA-crystallin and αB-crystallin is essential for maintaining transparency in the eye lens. The effect of congenital cataract causing mutants of αA-crystallin on subunit exchange and interaction with αB-crystallin is unknown. In the present study, interaction of the muta...
متن کاملInteraction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystalli...
متن کاملConfocal fluorescence resonance energy transfer microscopy study of protein-protein interactions of lens crystallins in living cells
PURPOSE To determine protein-protein interactions among lens crystallins in living cells. METHODS Fluorescence resonance energy transfer (FRET) microscopy was used to visualize interactions in living cells directly. Two genes, one (alphaA-crystallin) fused with green fluorescence protein (GFP) and the other (each of the following genes: alphaB-, betaB2-, gammaC-crystallin, and R120G alphaB-cr...
متن کاملOligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.
PURPOSE We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated αA-crystallin. The objective of this work was to determine the effects of wt αA- and αB-crystallins on the degradation of C-terminally truncated αA-crystallin (αA(1-162)) and vice ...
متن کاملFixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching.
Fluorescence resonance energy transfer (FRET) is a technique used for the study of functional interactions between molecules. The intimate vicinity between two fluorescent molecules (FRET-pair; donor and acceptor) allows for an energy transfer, which can be directly calculated as the so called FRET efficiency. This technique is used in fixed as well as living cells. Here we show first, measured...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Vision
دوره 14 شماره
صفحات -
تاریخ انتشار 2008